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PRIME CLUSTERS AND CUNNINGHAM CHAINS 

TONY FORBES 

ABSTRACT. We discuss the methods and results of a search for certain types of 
prime clusters. In particular, we report specific examples of prime 16-tuplets 
and Cunningham chains of length 14. 

INTRODUCTION 

We are mainly interested in finding large, maximally dense clusters of primes. Let 
k be an integer greater than one. Generalizing the notion of prime twins, we define 
a prime k-tuplet as a sequence of k consecutive primes such that in some sense the 
difference between the first and the last is as small as possible. More precisely, we 
first define s(k) to be the smallest number s for which there exist a set of k integers 
{ b1 -0, b2,... , bk} such that bk = s and, for every prime q, not all the residues 
classes modulo q are represented by {0,b2..... , bk}. We can then define a prime 
k-tuplet as a sequence of consecutive primes .P..... , Pk}, such that Pk - P1 = s(k) 
and Pi - P1 = bi, i = 2,.. ., k. The definition excludes a finite number (for each 
k) of dense clusters at the beginning of the prime number sequence; for example, 
{97, 101,103,107, 109} satisfies the conditions of the definition of a prime 5-tuplet, 
but {3, 5, 7, 11, 13} does not because all three residues modulo 3 are represented. 

The definition is motivated by the Prime k-tuple Conjecture, as stated by Dick- 
son [1] and in a quantitative form by Hardy and Littlewood [2]. The function s(k) 
has the property that there cannot be more than a finite number of sets of k con- 
secutive primes where the difference between the largest and the smallest prime is 
less than s(k). On the other hand, the Prime k-tuple Conjecture predicts that the 
prime k-tuplets we have defined above occur infinitely often for each k and each 
admissible set {b1, ... bk 

The simplest case is s(2) 2, corresponding to prime twins. Next, s(3) -6, 
where there are two types of prime triplets: {p, p + 2, p + 6} and {p, p + 4, p + 6}. 
Then s(4) = 8 with just one pattern {p,p + 2,p + 6,p + 8} of prime quadruplets, 
s(5) = 12 with two patterns of prime quintuplets, {p,p + 4,p + 6,p + 10,p + 12} 
and {p,p + 2,p + 6,p + 8,p + 12}, s(6) 16 with one pattern {p,p + 4,p + 6,p + 
10, p + 12, p + 16}, and so on. 

We are assuming that k is not too large. In general, however, proving that there 
exists at least one prime k-tuplet for each k seems to be a problem of extreme 
difficulty, and it has not yet been solved. Let p*(x) be the number of elements 
in the largest admissible set contained in the interval [1, x]. Hensley and Richards 
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[3] have shown that p* (x) exceeds wr(x) for all sufficiently large x. The Prime k- 
tuple Conjecture would then imply the existence of infinitely many super-dense 
prime k-tuplets with more primes in the k-tuplet than there are in [0, s(k)]. This 
is inconsistent with a conjecture of Hardy and Littlewood, which states that for 
integers x, y > 2 we always have wr(x + y) < wr(x) + wr(y). Gordon and Rodemich [4] 
examined the behaviour of p* (x) and, in particular, they determined the crossover 
point at which p* (x) first exceeds wr(x). 

AN ALGORITHM FOR COMPUTING s(k) 

For k > 3 it is possible to compute s(k) recursively by means of the simple 
algorithm given below. The notation p# is that of Caldwell and Dubner [5]; for p 
prime, p# is the product of all the primes up to and including p. 

Procedure s(k): 
Do S(s, 3, 1) for s = s(k- 1) + 2, s(k- 1) + 4,. .. until an admissible set B is 

found. 
Procedure S(s, q, H): 

Step 1. Set U q#, the product of all the primes < q. Set D = u 
q 

and h = H. 
Step 2. Set B {i: i = 0,2,...,s, gcd(h+i,U) = 1}. 
Step 3. If B does not contain both 0 and s, go to step 8. 
Step 4. If B has less than k elements, go to step 8. 
Step 5. If B has more than k elements, do S(s, q', h), where q' is the 

next prime after q. Then go to step 8. 
Step 6. If B has exactly k elements and if for each prime p, q < p < k, 

all residues modulo p are represented by B, go to step 8. 
Step 7. Indicate that B is an admissible set and report s(k) = s. 
Step 8. Add D to h. If h < H + U, go to step 2. Otherwise return. 

Starting with s(2) =2 and applying the procedure successively to k = 3, 4,... , 20, 
we obtain Table 1, which shows s(k) and admissible patterns. 

TABLE 1 

Number 
k s (k) of Patterns {bi = 0, b2, ., bk = s (k)} 

patterns 

2 2 1 {0,2} 

3 6 2 {0,2,6}, {0,4,6} 

4 8 1 {0,2,6,8} 

5 12 2 {0, 2,6,8, 12}, {0, 4,6, 10, 12} 

6 16 1 {0,4,6,10,12,16} 

7 20 2 {0, 2, 6, 8, 12, 18, 20}, {0, 2, 8, 12, 14, 18, 20} 

8 26 3 {0,2,6,12,14,20,24,26}, 
{0, 2, 6, 8, 12, 18, 20, 26}, {0, 6, 8, 14, 18, 20, 24, 26} 

{0,4,6,10,16,18,24,28,30}, 

9 30 4 {0,4,10,12,18,22,24,28,30}, 
{0,2,6,8,12,18,20,26,30}, 

L ___ _______ {0,2,6,12,14,20,24,26,30} 



PRIME CLUSTERS AND CUNNINGHAM CHAINS 1741 

THE LARGEST KNOWN PRIME k-TUPLETS 

At this point it is convenient to record the largest prime k-tuplet known to the 
author (at time of writing), for k = 2,3,... ,16. I am not aware of any examples for 
k > 17 other than the easily identifiable ones that occur near the beginning of the 
prime number sequence. In keeping with similar published lists, all the numbers 

TABLE 1 (conltinued) 
Number 

k s(k) of Patterns {bi = 0, b2,... , bk- s(k)} 
patterns 

10 32 2 {0,2,6,8,12,18,20,26,30,32}, 
{0,2,6,12,14,20,24,26,30,32} 

11 36 2 {0,4,6,10, 16,18,24,28,30,34,36}, 
{0,2,6,8,12,18,20,26,30,32,36} 

12 42 2 {0,6,10,12,16,22,24,30,34,36,40,42}, 
{0,2,6,8,12,18,20,26,30,32,36,42} 

{0,6,12,16,18,22,28,30,36,40,42,46,48}, 

{0,4,6,10,16,18,24,28,30,34,40,46,48}, 

13 48 6 {0,4,6,10,16,18,24,28,30,34,36,46,48}, 
{0,2,6,8,12,18,20,26,30,32,36,42,48}, 

{0,2,8,14,18,20,24,30,32,38,42,44,48}, 

{0,2,12,14,18,20,24,30,32,38,42,44,48} 

14 50 2 {0,2,6,8,12,18,20,26,30,32,36,42,48,50}, 
{0,2,8,14,18,20,24,30,32,38,42,44,48,50} 

{0,2,6,8,12,18,20,26,30,32,36,42,48,50,56}, 

15 56 4 {0,2,6,12,14,20,24,26,30,36,42,44,50,54,56}, 
{0,2,6,12,14,20,26,30,32,36,42,44,50,54,56}, 

{0,6,8,14,20,24,26,30,36,38,44,48,50,54,56} 

16 60 2 {0, 4,6,10,16,18,24,28,30,34,40,46,48,54,58,60}, 
{0,2,6,12,14,20,26,30,32,36,42,44,50,54,56,60} 

{0,4,10,12,16,22,24,30,36,40,42,46,52,54,60,64,66}, 

17 66 4 {0,4,6,10,16,18,24,28,30,34,40,46,48,54,58,60,66}, 
{0,6,8,12,18,20,26,32,36,38,42,48,50,56,60,62,66}, 

{0,2,6,12,14,20,24,26,30,36,42,44,50,54,56,62,66} 

18 70 2 {0,4,10,12,16,22,24,30,36,40,42,46,52,54,60,64,66,70}, 
{0,4,6,10,16,18,24,28,30,34,40,46,48,54,58,60,66,70} 

{0,6,10,16,18,22,28,30,36,42,46,48,52,58,60,66,70,72,76}, 

19 76 4 {0,4,6,10,16,22,24,30,34,36,42,46,52,60,64,66,70,72,76}, 
{0,4,6,10,12,16,24,30,34,40,42,46,52,54,60,66,70,72,76}, 

{0,4,6,10,16,18,24,28,30,34,40,46,48,54,58,60,66,70,76} 

20 80 2 {0,2,6,8,12,20,26,30,36,38,42,48,50,56,62,66,68,72,78,80}, 
{0,2,8,12,14,18,24,30,32,38,42,44,50,54,60,68,72,74,78,80} 
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listed below are true, proven primes. As before, p# denotes the product of the 
primes up to p. 

k = 2: {242206083 x 238880 + b: b --1, 1} (11713 digits, 1995, K.-H. Indlekofer 
& A. Jarai [6]) 

k = 3: {437850590(23567 - 21189) - 6 x 21189 + b: b =-5,-1, 1} (1083 digits, 
1996, T. Forbes [7]) 

k = 4: {10499 + 883750143961 + b: b = 0,2,6,8} (500 digits, 1996, Warut 
Roonguthai [8]) 

k = 5: {8947613442 x 53# x 2672 + 101 + b: b = 0, 2, 6,8,12} (232 digits, 1997, 
A. 0. L. Atkin [9]) 

k = 6: {82248305245 x 43# x 2479 + 16057 + b: b 0,4,6, 10,12, 16} (172 digits, 
1997, A. 0. L. Atkin [9]) 

k = 7: {42695514369421319784846357472632863655300299802990775938011114 
1003679237691 + b: b = 0,2,6,8,12,18, 20} (75 digits, 1997, A. 0. L. Atkin [9]) 

k = 8: {582994762600347672560616756460401857268344059297139419451 + b: 
b 0, 2, 6, 8,12,18, 20, 26} (57 digits, 1996, A. 0. L. Atkin [9]) 

k 9: {11456782178002488855779277536193082378054961+b: b = 2,6,8,12,18, 
20, 26, 30, 32} (44 digits, 1996, A. 0. L. Atkin [9]) 

k = 10: {11456782178002488855779277536193082378054961+b: b = 0,2,6,8,12, 
18, 20, 26,30, 32} (44 digits, 1996, A. 0. L. Atkin [9]) 

k = 11: {495064300630708278713578451 + b: b = 0, 2,6,8,12,18, 20, 26, 30, 32, 
36} (27 digits, 1997, A. 0. L. Atkin [9]) 

k = 12: {495064300630708278713578451 + b: b = 0,2,6,8,12,18,20,26,30,32, 
36,42} (27 digits, 1997, A. 0. L. Atkin [9]) 

k 13: {964013473328959309238999 + b: b = 0,2,8,14,18,20,24,30,32,38,42, 
44,48} (24 digits, 1997, T. Forbes) 

k = 14: {11319107721272355839 + b: b = 0,2,8,14,18,20,24,30,32,38,42,44, 
48,50} (20 digits, 1997, T. Forbes) 

k = 15: {84244343639633356306067 + b: b = 0,2,6,12,14,20,24,26,30,36,42, 
44, 50, 54, 56} (23 digits, 1997, T. Forbes) 

k = 16: {1522014304823128379267 + b: b = 0,2,6,12,14,20,26,30,32,36,42,44, 
50, 54, 56, 60} (22 digits, 1997, T. Forbes) 

Primality proofs for the triplets (k 3) can be established by the methods of 
Brillhart, Lehmer and Selfridge [10]. Writing 

N = 437850590(23567 - 21189) -6 x 21189 

the primality of N + 1, N - 1 and N - 5 follow from the partial factorizations 

N= 21191 x 32 x 72 x (composite) 

and 

N - 6 = (21189 + 1) x 2 x 17 x 144887 x (composite). 

The number 21189 + 1 has been completely factored into primes by the Cunningham 
project [11]. 

The entries for k = 5, 6, ... , 12 are unpublished results of Oliver Atkin, and I am 
very grateful for his permission to include them in this paper. 

Guy [12, Section A9] lists a number of prime k-tuplets, including the only two 
large prime 14-tuplets known at that time, found by Dimitrios Betsis and Sten 
Saffholm. The entries for k 13 and k = 14 in the above list are new. 
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Apart from {11,13,17,19,23,29,31,37,41,43,47,53,59,61,67}, {17,19,23,29, 
31, 37, 41,43,47, 53, 59, 61, 67, 71, 73} and subsets of the 16-tuplets reported in this 
paper, only eight further prime 15-tuplets are currently known to the author, 
namely: 

{8985208997951457604337 + b: b B15}, 

{2958380122665046736597 + b: b E B15}, 

{2088253704394088213987 + b: b E B15 }, 

{1337707385720650557617 + b: b C B15}, 

{944716030613719714367 + b: b E B15}, 

{205700275761622834847 + b: b E B15 }, 

{107862607835977274207 + b: b E B15}, 

{36351118555624575707 + b: b C B15} 

Here, 

B15 {0, 2,6,12,14,20,26,30,32,36,42,44,50,54,56} 

and 

B5 = {0, 2,6,12,14,20,24,26,30,36,42,44,50,54,56}. 

The one beginning 205700275761622834847 was first published in [13]. 
Only three prime 16-tuplets are known to me, the obvious example {13, 17,19, 23, 

29,31,37,41,43,47,53,59,61,67, 71, 73}, the one given in the main list above, and 

(1) 
{47710850533373130107+b: b=0,2,6,12,14,20,26,30,32,36,42,44,50,54,56,60}, 

first announced on the Internet (on 20 May 1997) via the NMBRTHRY mailing 
list. 

PRIME 16-TUPLETS 

We now give a brief description of the search for prime 16-tuplets that led to the 
discovery of (1). Recalling that s(16) = 60, it is easy to determine that there are 
just two admissible patterns of primes: 

(2) {p + b: b 0, 2, 6, 12,14, 20, 26,30,32,36,42,44, 50, 54, 56, 60} 

and 

(3) {p- b: b 0,2,6,12,14,20,26,30,32,36,42,44,50,54,56,60}. 

For our purpose it is natural to combine both (2) and (3) into a single form, 

(4) {lp+bl: b c B}, 
where 

B = {0, 2,6,12,14,20,26,30,32,36,42,44,50,54,56,60} 

is the set of displacements and where p is now allowed to take both positive and 
negative values. The Prime k-tuple Conjecture implies that each of (2) and (3) 
occurs with all 16 elements prime for infinitely many values of p. 

Let q be a prime greater than 23, and let Q = q# = 2 x 3 x ... x q. To find 
suitable candidates for the first element p of a prime 16-tuplet (4), we consider 
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numbers of the form gQ + h, where h satisfies gcd(HbeB(h + b), Q) = 1 and g runs 
from -G to G for some fixed positive integer G. 

It is possible to generate the h's very efficiently by means of the Chinese Remain- 
der Theorem. Let Q = m0m1 ... mr, where in0, nI... I ,Tm are pairwise coprime. 
For i = 0,1, . . ., r, let Hi be the set of residues j (mod mi), 0 < j < mi, such that 
gcd(j + b, m )1 for all b E B. Denote their, number by fOB(mi). Thus pB is a 
generalization of Euler's p-function. Write 

ci { (h ((Q) modmi) m modQ): hEzH 

where (( )1 modm2) denotes the unique integer x, 0 < x < m, for which x 1Q - 

(mod in2). Let c- run through the (oB(mi) elements of Ci and let 

h = co + cl + + cr. 

By a straightforward application of the Chinese Remainder Theorem, h runs 
through the residues (mod Q) such that gcd(h + b, Q) = 1 for all b E B. 

From the programmer's point of view, what is so marvellous about this approach 
is that we can calculate each of the pB (MO) + gB(MI) + . + sOB(Mr) coefficients 
c0 E Co, cl E Ci, ... I, c E Cr in advance and store them in an array to be indexed 
by a kind of (r + 1)-digit number [dod1 ... dr]. The digit di ranges from 0 to 

B (mi)-1 and indexes the numbers ci in the set Ci. One can imagine a nest of 
iterative loops, one for each digit, do, d.... . , d., numbered from the innermost to 
the outermost. We begin with the outer loop and set 

hr = cr (mod Q). 
Then at the jth stage, j = r- 1,r-2, ... .,0, we compute 

hj=h_ + c (modQ), 

eventually to yield the final sum 

h=ho=hl+co=cr+cr,+?...+co (modQ) 

in the central loop. Hence, assuming OB ((m0) is not too small, the effort required 
to generate the next h is essentially just the addition of co to h1. It is not necessary 
to reduce the sum modulo Q in the innermost loop if the parameter G is increased 
by one. 

If the search is to be spread over several computers, this structure provides a 
convenient method of parcelling out ranges by distributing the workload on the 
basis of the high-order digits of [dod1 ... dr] 

In our search for prime 16-tuplets, the divisors of Q are the composite integer 
23# and the primes 29, 31,37,..., q for some suitable q. By a straightforward 
computation, fOB(23#) = 160, pB(29) = 14 and OB(P) = p - 16 for prime p > 
31. We perform a sieving procedure to eliminate those g's,-G < g < G, where 
HbCB (gQ + h + b) is divisible by a prime p, q < p < P for some fixed prime P, the 
sieve limit. For each p and for each b E B, we compute 

gh,b = G- hQ - bQ-1 (modp), 
where Q1 is the multiplicative inverse of Q modulo p. 

We exploit the 32-bit architecture of the computer by processing the h's in 
batches of 32 at a time. The sieve table is an array of 32-bit words, each bit 
position in the word corresponding to a specific h. Thus we have 512 gh,b's, 16 for 
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each h. We eliminate all gh,b + ip, where i runs from 0 to [2G/p], by flagging the 
appropriate bits in the sieve table. The survivors, numbers x = gQ + h such that 
gcd(x + b, P!) = 1 for all b E B, can then go forward to be checked for probable 
primality by the usual type of test based on the Fermat-Euler theorem. 

For large primes, it is quite appropriate to treat all the residues gh,b (modp) 
as if they are different. However, for primes p < L, with suitably chosen L, it is 
more efficient to consolidate the gh,b'S into residue classes modulo p; then the sieve 
requires only p bit-operations for each i, rather than 512. Although occasionally 
a residue class (modp) is empty, it turns out that the penalty for testing this 
possibility is too severe. It is faster to operate on all p residue classes anyway. 
Whilst the cut-off parameter L can be determined accurately by experiment, we 
found that the value which suggests itself, namely 512, seems to be about right. 

Let X denote the size of the largest numbers we wish to test. We must choose G 
and Q = q# such that GQ = X, at least approximately. There is a balance between 
G and Q. The time taken to perform the sieving operation is approximately a 
linear function of G, aG + /3, say, where the constant term /3 represents the fixed 
overheads of setting up the sieve for a batch of h's. On the one hand, we do not 
want G to be too big, for then we could add an extra factor q' to Q. This results 
in p B(q') times as many sieving operations. To keep the numbers limited by X, we 
need a corresponding reduction of G by a factor q', and if G is large, the sieve will 
consequently run nearly q' times as fast. Hence there will be an overall performance 
improvement by a factor of somewhat less than q'//B (q'). On the other hand, there 
is a limit to this process of trading between Q and G. Eventually G will be too 
small and the overheads term /3 of the linear function will become significant. 

The actual parameters used by the computer program were G = 8000 and q = 53. 
Hence Q -53# = 32589158477190044730 and the range of numbers searched was 
?2.6 x 1023 approximately. A sieve limit of P = 997 was more or less optimal. 

CUNNINGHAM CHAINS 

A Cunningham chain of length k is a finite set of primes {.P ... ,Pk}, where 
either 

Pi+, = 2Pi + 1, i = 1,2, ..., k - 1, 
or 

Pil=2Pi - 1, i = 1, 2, ... ., k - 1. 

The subject is discussed in Section A7 of Guy's book [12], in which it is reported 
that Giinter Loh [14] discovered two 12-chains, one of each type, and one 13-chain 
of the second type. 

The computer program used to find the prime 16-tuplets needs only trivial mod- 
ifications to search for long Cunningham chains of both types. The displacement 
set is 

B = 2' - 1: i = 0,1,12, ... .,15}; 

Q = 215 x 43#, and the divisors of Q for the generation of h's by the Chinese 
Remainder Theorem are 21519#, together with the primes 23, 29, 31, 37, 41 and 43. 
The corresponding valuesof pB are (pB(2 1519#) = 108, pB(23) = 12, pB(29) = 13, 
(PB(31) = 26, 95B(37) = 21, FOB(41) = 25 and (PB(43) = 29. 
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So far, at the time of writing, the program has found several chains of length 14: 
seven chains of the first type (we list just the initial prime) 

23305436881717757909, 

62531052480133186949, 

821475459209107'08809, 

122540276723869633199, 

143748292422532838039, 

276263382636371627639, 

385931755250345784479; 

and five chains of the second type 
7581331732236992731, 

58440455390376224881, 

114092434517600982301, 

317610168417517146601, 

382966590759340988401. 

NOTE, ADDED SEPTEMBER 1998 

During the time that has elapsed since the preparation of the initial version of 
this paper, the author and others have extended many of the results. In particular, 
the author has discovered prime 17-tuplets, 

{3259125690557440336631 + b: b = 0, 6, 8, 12, 18, 20, 26,32, 36, 38,42,48, 50, 

56,60,62,66}, 

several Cunninghamn chains of 15 elements and one Cunningham chain of 16 ele- 
ments. The initial prime of the sixteen-element chain is 

3203000719597029781. 

Further details will appear in a forthcoming paper. 
I would like to thank the referee for drawing my attention to the papers of 

Dickson [1] and Gordon and Rodemich [4]. 
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